

Journal of Molecular Catalysis A: Chemical 160 (2000) 277-285

www.elsevier.com/locate/molcata

Nafion-RuO₂-Ru(bpy) ²⁺ composite electrodes for efficient electrocatalytic water oxidation

K. Chandrasekara Pillai a,*, A. Senthil Kumar a, Jyh-Myng Zen b

^a Department of Physical Chemistry, University of Madras, Guindy Campus, Madras, 600 025, India
^b Department of Chemistry, National Chung-Hsing University, Taichung 402, Taiwan

Received 5 January 2000; accepted 1 May 2000

Abstract

Electrocatalytic water oxidation to evolve O_2 was studied on a Nafion-RuO₂-Ru(bpy) $_3^{2+}$ composite electrode. The O_2 evolution current efficiency was largely improved for the multi-component electrode over the Nafion-RuO₂ and Nafion-Ru(bpy) $_3^{2+}$ individuals. The redox mediation through the Ru(bpy) $_3^{2+}$ was found to dominate over the RuO₂ catalytic effect in the water oxidation mechanism. The specific surface area of the RuO₂, which was prepared at different temperatures (300-700°C), used in fabricating the composite electrode also played an important role in the overall water oxidation mechanism. Both the reaction and electrode parameters were optimized to get effective electrocatalytic current values in this study. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Electrocatalysis; Water oxidation; Nafion; RuO₂; Ru(bpy)₃²⁺

1. Introduction

Water oxidation has been the focus of intensive study due to its importance in photosynthesis, and in designing artificial photosynthetic system for solar energy conversion to obtain a renewable energy resource [1–8]. Unfortunately, the high overpotential for the $4e^-$ oxidation of H_2O to O_2 makes the process less feasible. One way to improve this is to use suitable oxygen evolution catalysts (Cat_{OER}), like RuO_2 , IrO_2 , PtO_2 , etc., together with photosensitizers (PSn), such as $Ru(bpy)_3^{2+}$,

 $Fe(bpy)_3^{2+}$, $Fe(phen)_3^{2+}$, etc. On the other hand, various molecular-based catalysts, such as oxobridged ruthenium dimers ([L₂(H₂O)Ru-O- $Ru(H_2O)L_2$]⁴⁺, where L = 2,2'-bipyridine and 4,4'-dichloro or 5,5'-dichloro-2,2'-bipyridine [5, 9-12]), in combination with suitable oxidants, like Ce⁴⁺, MnO₄⁻, IO₄⁻, PbO₂, BrO₃⁻, $Ru(bpy)_3^{3+}$, $Fe(bpy)_3^{3+}$ were also reported for this purpose [13]. The chief advantage in using the integrated Cat_{OFR}/PSn system, however, is that the Cat_{OFR} contains specific higher oxidation redox groups (e.g., Ru(VII)/Ru(VI) and Ru(VI)/Ru(IV) for RuO₂) and surface area, which cannot be expected in the simple molecular-based catalyst systems [8]. Majority of work shows that the catalyst RuO₂ and the photosen-

^{*} Corresponding author. Fax: +91-44-2352870.

E-mail address: kchandra@unimad.ernet.in (K.C. Pillai).

sitizer $Ru(bpy)_3^{2+}$ are the best combination for H_2O decomposition, in which $Ru(bpy)_3^{3+}$, formed from the electronically excited complex $[Ru(bpy)_3^{2+}]^*$, serves as the oxidant [1–3,8,13]. Although the photochemical aspects in combining RuO_2 with $Ru(bpy)_3^{2+}$ were thoroughly studied, surprisingly, very little attention was paid to its electrochemical aspects. The interaction of the catalyst RuO2 with the oxidant $Ru(bpy)_3^{3+}$ (i.e., the dark process in the photochemical reaction) was especially ignored, which is one of the key processes in the overall H₂O oxidation step [13]. To investigate these aspects, in this work, electrochemical techniques were used to generate the oxidant $Ru(bpy)_3^{3+}$ and to study the oxygen evolution efficiencies.

The combination of Cat_{OFR} with PSn in a compact, multi-layer polymer matrix can effectively solve the experimental difficulties faced in solution phase homogeneous and heterogeneous photocatalytic systems. In the present investigation, recast Nafion films were used as the polymer matrix to achieve efficient water oxidation. As to our knowledge, no such studies were undertaken before. In the present work, a systematic investigation was made to prepare the Nafion (0.1-1%)-RuO₂ (0.03%)-Ru(bpy)₃²⁺ composite electrodes to achieve the maximum oxygen evolution efficiency. The experimental parameters, including the RuO₂ preparation temperature (a key factor to achieve different surface area, particle size, and porosity [14]), RuO₂ loading amount, Nafion composition, solution pH, and operating potential were thoroughly studied.

2. Experimental

2.1. Materials and catalyst preparation

Nafion 117 solution (5% w/v solution in a mixture of lower aliphatic alcohols) obtained from Aldrich Chemical was used to prepare

required dilutions by freshly distilled ethanol. RuCl₂ · xH₂O was purchased from Arora Matthey, India and used without further purification. The complex Ru(bpy)₃²⁺ was prepared according to the procedure reported in the literature [15], and its formation was confirmed by UV-visible spectroscopy (peak at 452 nm). All the other chemicals used were of reagent grade. RuO₂ powders were prepared from RuCl₃. xH_2O by high temperature pyrolyzing technique [16]. In brief, $RuCl_3 \cdot xH_2O$ (3 g) was first dried at 100°C for 1 h, crushed in agate mortar in hot condition, transferred to a quartz silica boat and placed in muffle furnace, which was kept preheated at 150°C. Furnace temperature was then varied gradually to the preset preparation temperature of 300-700°C for the formation of RuO₂ crystallites, and the samples were heated in the presence of O2 stream at a pressure of $20-30 \text{ dm}^3 \text{ h}^{-1}$ for 6 h. The samples were taken out, crushed again, and finally heated at the same temperature for another 6 h. Furnace temperatures were initially standardized with the help of a standard Chromel-Alumel thermocouple using standard EMF values [17]. The catalyst powders were thoroughly washed in double distilled water until the solution gave a negative test for Cl⁻ with Ag⁺, and finally dried at 110°C for 12 h. BET surface area measurements were performed using Carlo Erba Strumentazione Microstructure Lab instrument using N₂ gas adsorption technique.

2.2. Apparatus

Cyclic voltammetry was conducted with a Wenking Potentiostat (Model ST 72), a Wenking scan generator (Model VSG 83) and a Graphtec XY recorder (Model WX 2300). A conventional H-type cell, equipped with a large area platinum plate as a counter electrode and a saturated calomel electrode (SCE) with lugging capillary as a reference electrode, was employed throughout the studies. N₂ gas was used for deaerating the experimental solution.

2.3. Preparation of the Nafion-modified electrodes

To prepare the Nafion-coated glassy carbon electrode (Nafion-GCE), 7 µl of the Nafion solution of desired weight percentage (0.1–1% w/v) was coated onto the pretreated GCE (geometrical area of 0.0707 cm²) followed by airdrying for 25-30 min. The GCE was initially abraded with increasingly fine grades of emery paper down to mirror finish, degreased with trichloroethylene, washed with copious amount of double distilled water, followed by potential cycling for four times in the deaerated base electrolyte in the potential region 0.0 to 1.4 V (RHE) at a potential scan rate (v) = 20 mV s⁻¹. As for the Nafion-Ru(bpy) $_{3}^{2+}$ electrode, the Nafion-GCE was dipped in 1 mM $Ru(bpy)_3^{2+}$ in 0.1 M H₂SO₄ or pH 4.6 of acetate buffer solution for 10-15 min, removed, washed thoroughly with double distilled water, and cycled between 0.45 and 1.15 V (RHE) in the supporting electrolyte until the voltammetric peaks became constant. For preparing the Nafion-RuO₂ electrode, the diluted Nafion solution containing ${
m RuO_2}$ suspensions (0.03% w/v) was sonicated for 5–10 min until the suspensions became fully dispersed, and the clear colloidal solution was then coated on to the pretreated GCE and dried. Finally, the Nafion– ${
m RuO_2}$ – ${
m Ru(bpy)_3^{2+}}$ composite electrode was prepared by loading ${
m Ru(bpy)_3^{3+}}$ into the Nafion– ${
m RuO_2}$ electrode, following the procedure described above for the Nafion– ${
m Ru(bpy)_3^{3+}}$ electrode.

3. Results and discussion

Fig. 1 shows the typical cyclic voltammetric responses of the Nafion-modified electrodes recorded at 20 mV s⁻¹ scan rate in 0.1 M $\rm H_2SO_4$ acid solution. It is clear that no specific redox peaks were noticed for both the Nafion-GCE (curve a) and the Nafion-RuO₂ electrode (curve b). On the other hand, a well-defined pair of redox peaks with the formal potential, E^{0} , 1.02 V (SCE) corresponding to the oxidation and reduction of Ru(bpy) $_3^{3+/2+}$ was observed with the Nafion-Ru(bpy) $_3^{2+}$ electrode (curve a'). The same redox process was observed with

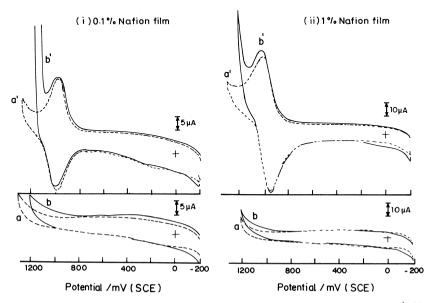


Fig. 1. Cyclic voltammetric responses of Nafion-modified electrodes in 0.1 M $_2SO_4$ solution at v=20 mV s⁻¹: (i) 0.1% Nafion film; (ii) 1% Nafion film: (a) Nafion-GCE; (b) Nafion-RuO₂ (0.03%, 700°C) electrode; (a') Nafion-Ru(bpy)²⁺₃ electrode; (b') Nafion-RuO₂ (0.03%, 700°C)-Ru(bpy)²⁺₃ electrode.

the Nafion–RuO₂–Ru(bpy) $_3^{2+}$ electrode (curve b'), which also showed a greatly enhanced oxygen evolution current. Note that the redox peaks of Ru(bpy) $_3^{2+/3+}$ were not affected by the presence of RuO₂ in the film. Most important of all, the appearance of the cathodic peak in the reverse scan (curve b') indicated that there was no mediated H₂O oxidation by the electrogenerated Ru(bpy) $_3^{3+}$ in the presence of RuO₂ in 0.1 M H₂SO₄.

The performance of the Nafion-modified electrodes was also studied in pH 4.6 acetate buffer and the voltammograms are presented in Fig. 2. Interestingly, compared to Fig. 1, the cathodic peak in Fig. 2 showed a decreased intensity, suggesting that the Ru(bpy)₃³⁺ formed at the anodic peak was removed by H₂O through a chemical reaction. It is therefore clear that the O₂ evolution reaction was mediated by the electrogenerated Ru(bpy)₃³⁺ complex and catalyzed by the RuO₂ dispersions in the Nafion film in pH 4.6 solution. The absence of the Ru(bpy)₃³⁺mediated catalysis in 0.1 M H₂SO₄ is understandable, since E⁰ at this pH for Ru(bpy)₃^{3+/2+} and O₂/H₂O are 1.02 V (SCE) and 0.98 V

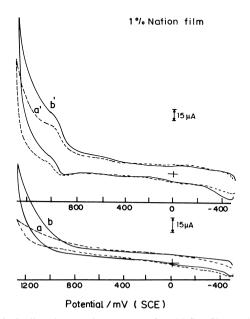


Fig. 2. Cyclic voltammetric responses of 1% Nafion film-modified electrodes in pH 4.6 acetate buffer solution at $v=20~{\rm mV~s^{-1}}$. Other assignments are the same as in Fig. 1.

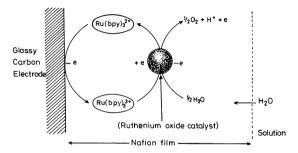


Fig. 3. Schematic representation of water oxidation reaction at the Nafion $-\text{RuO}_2-\text{Ru}(\text{bpy})_3^{2^+}$ multi-component electrode.

(SCE), respectively [8,13], so that $Ru(bpy)_3^{3+}$ cannot accept electron from H_2O . But in pH 4.6 acetate buffer the E^{0r} of O_2/H_2O is 0.68 V (SCE), and therefore the thermodynamic driving force for the reaction is substantially greater (340 mV) than that in 0.1 M H_2SO_4 . Fig. 3 illustrates the possible electrocatalytic H_2O oxidation reaction at the Nafion– RuO_2 – $Ru(bpy)_3^{2+}$ composite electrode.

As shown in Fig. 2, the voltammograms of all the Nafion-modified electrodes showed a sharp increase in current signals at high anodic potentials due to the anodic oxidation of the solvent H₂O. This process, which started occurring at a potential ≈ 1.05 V (SCE) at the Nafion-GCE (curve a) and the Nafion-Ru- $(bpy)_3^{2+}$ electrode (curve a'), was initiated at a less positive potential 0.9 V (SCE) at the Nafion-RuO₂ electrode (curve b). Moreover, the current increase at the Nafion-RuO2 electrode was accompanied by a visible formation of tiny oxygen gas bubbles near the electrode surface especially at higher anodic potentials. This finding is in accordance with the previous reports by Shieh and Hwang [18], who also observed that the amount of O_2 gas collected at a PTFE-modified RuO₂ electrode in the anodic potential regions was in quantitative agreement with the oxygen-generated charge. Interestingly, compared to the Nafion-RuO2 electrode, the Nafion $-RuO_2-Ru(bpy)_3^{2+}$ multi-component electrode showed a marked increase in both the anodic current signal and the oxygen gas bubble formation, at any given potential, as illustrated

by curve b' of Fig. 2, thus confirming the RuO_2 -catalyzed $Ru(bpy)_3^{3+}$ -mediated oxygen gas evolution from water decomposition [2,3].

Note that in solution phase photochemical reactions involving multiple components in solution, the water oxidation to O_2 was not a straightforward process due to the occurrence of many unwanted side reactions. For example, RuO₂ catalyst was not specific towards water oxidation alone, and it was shown to promote hydrogen generation as well [19,20]. Besides, RuO2 catalyst was found to aid the mediated oxidation of the protective agent, used to stabilize the catalyst particles, over that of water [21]. Moreover, mere reduction of Ru³⁺ complex to Ru²⁺ did not guarantee stoichiometric quantities of O_2 evolution; this was attributed to irreversible decomposition of Ru³⁺ complex occurring in competition with the water oxidation [22,23]. Precisely, for these reasons, in-situ physical methods like oxygen-sensing electrodes, gas chromatography, etc., were used in solution phase photochemical water oxidation studies to confirm the O₂ formation and measure the oxygen gas evolved. The above mentioned drawbacks associated with solution-phase water oxidation experiments could be traced back to the fact that in these systems catalytic sites in Catoer were not energetically fixed and always not close to make effective collision with PSn to generate the product, viz., O₂. As for the O₂ evolution at the positively polarized Nafion-RuO₂-Ru(bpy)₃²⁺ electrode in the present study is considered, these problems may not arise for the following two reasons: (1) the applied positive electrical field ensured that PSn and Cat_{OFR} sites in Nafion were energetically fixed to react favourably and produce oxygen; (2) Yagi et al. [24] showed that with the incorporation of Ru³⁺ complex catalyst into Nafion membrane, the amount of O2 evolved and the catalyst activity were remarkably increased, compared to the homogeneous solution system. This was attributed to a decrease in the bimolecular decomposition of the Ru³⁺ catalyst in the polymer film. Basing on this, one could expect that the decomposition and the deactivation of Ru(bpy)₃³⁺ complex and RuO₂ catalyst were suppressed by incorporating them into the Nafion film. In addition to this, because of the presence of both RuO₂ and Ru(bpy)₃³⁺ together in the polymer matrix, their proximity could bring cooperative catalysis possible (vide infra), and their combination could lead to water decomposition reaction only, at the Nafion–RuO₂–Ru(bpy)₃²⁺ electrode under the present experimental conditions as per the reaction scheme described in Fig. 3.

As the voltammogram at more positive potentials > 1.5 V (SCE) resulted in the rupture of the Nafion film due to vigorous bubble formation from the interstitial sites of the composite electrode, the voltammetric experiments with all the modified electrodes were restricted to a maximum anodic sweep potential of 1.3 V (SCE).

Trends similar to those in Figs. 1 and 2 were observed, with other Nafion electrodes fabricated using RuO_2 powders prepared at different temperatures (600–300°C).

In order to compare the catalytic efficiency of the modified electrodes, two parameters, E_{OFR} , the potential at which oxygen evolution started, and, i_{OFR} , the anodic oxygen evolution current measured at 1.30 V (SCE), were estimated from the above quasi steady-state cyclic voltammograms for the individual electrodes and the composite electrode. Typical data for thin (0.1% Nafion) and thick (1% Nafion) film electrodes are assembled in Tables 1 and 2, respectively. It is clear from the Tables that for both thin and thick film electrodes, the Nafion- RuO_2 - $Ru(bpy)_3^{2+}$ composite electrode had more efficient water oxidation current than the individual electrodes, i.e., Nafion-GCE, Nafion- RuO_2 , and Nafion-Ru(bpy)₃²⁺ electrodes. A comparison of the performance shows that the Nafion (0.1%)-RuO₂-Ru(bpy)₃²⁺ electrode had higher efficiency over the Nafion (1%)-RuO₂- $Ru(bpy)_3^{2+}$ electrode.

Experiments with different weight percentage of the Nafion coating resulted in the variation of

Table 1 Water oxidation potential ($E_{\rm OER}^a$) and oxygen evolution current ($i_{\rm OER}$) at 1.3 V^a for the 0.1% Nafion film electrodes in pH 4.6 acetate buffer

T (°C)	(1) Nafion (0.1%)–GCE		(2) Nafion (0.1%)– RuO ₂ (0.03%)		(3) Nafion (0.1%)– Ru(bpy) ₃ ²⁺		(4) Nafion (0.1%)–RuO ₂ (0.03%)–Ru(bpy) ₃ ²⁺		Catalytic current (µA) ^b	
	E _{OER} (mV)	i _{OER} (μΑ)	$\overline{E_{\text{OER}}}$ (mV)	i _{OER} (μΑ)	E _{OER} (mV)	i _{OER} (μΑ)	E _{OER} (mV)	i ^c _{OER} (μΑ) ^c	Due to RuO ₂ alone [(2)–(1)]	Due to $Ru(bpy)_3^{2+}$ alone [(4)–(2)]
700	1040	26.5	920	73.5	1060	54.5	875	143.5	47.0	70.0
600	1040	26.5	920	91.5	1060	54.5	860	118.5	65.0	27.0
500	1040	26.5	900	96.8	1060	54.5	850	195.0	70.3	98.2
400	1040	26.5	920	160.5	1060	54.5	880	471.0	134.0	310.5
300	1040	26.5	920	442.5	1060	54.5	905	1710.0	416.0	1267.5

^aPotentials are referred with respect to SCE.

the following: (1) the film thickness, (2) the loading amount of $Ru(bpy)_3^{2+}$, and (3) the nature of the charge transport process within the film. While the film thickness of the Nafion coating depended directly on the coating weight of the polymer, it was not true for $Ru(bpy)_3^{2+}$ loading. The total surface concentration (Γ_T) of the $Ru(bpy)_3^{2+}$ complex in the Nafion film was calculated from the anodic charge (Q_a) under the voltammetric peak recorded at v=20 mV s⁻¹, using the equation $Q_a=nFA\Gamma_T$ [25], where n is the number of electrons of the reaction, A the electrode geometric area, and F

the Faraday constant. With n=1, $\Gamma_{\rm T}$ was calculated to be 6.61×10^{-10} and 2.63×10^{-10} mol cm⁻² in Nafion's 1% and 0.1% films, respectively. Note that the 10 times diluted solution of 1% Nafion yielded only 2.51 times decrease in the $\Gamma_{\rm T}$ value in the films, which was reminiscent of the relatively higher accumulation force of Ru(bpy)₃²⁺ species per unit area of the 0.1% Nafion sites. Regarding the charge transport process, the logarithmic plots of the anodic peak current $(i_{\rm pa})$ vs. scan rate from cyclic voltammograms of 0.1% and 1% Nafion–Ru(bpy)₃²⁺ electrodes produced

Table 2 Water oxidation potential (E_{OER}^a) and oxygen evolution current (i_{OER}) at 1.3 V^a for the 1% Nafion film electrodes in pH 4.6 acetate buffer

T (°C)	(1) Nafion (1%)–GCE		(2) Nafion (1%)– RuO ₂ (0.03%)		(3) Nafion (1%)– Ru(bpy) ₃ ²⁺		(4) Nafion (1%)–RuC (0.03%)–Ru(bpy) ₃ ²⁺		O ₂ Catalytic current (μA) ^b	
	$\overline{E_{\text{OER}}}$ (mV)	i _{OER} (μΑ)	$\overline{E_{\text{OER}}}$ (mV)	i _{OER} (μΑ)	E _{OER} (mV)	i _{OER} (μΑ)	$\overline{E_{\text{OER}}}$ (mV)	i _{OER} (μΑ) ^c	Due to RuO ₂ alone [(2)–(1)]	Due to Ru(bpy) $_{3}^{2+}$ alone [(4)–(2)]
700	1090	31.5	900	113.3	1100	107.3	855	187.5	81.8	74.3
600	1090	31.5	920	47.3	1100	107.3	840	156.0	15.8	108.8
500	1090	31.5	905	111.8	1100	107.3	860	236.3	80.3	124.5
400	1090	31.5	900	127.5	1100	107.3	875	412.5	96.0	285.0
300	1090	31.5	910	485.0	1100	107.3	890	1120.0	453.5	635.0

^aPotentials are referred with respect to SCE.

^bIndividually contributed current to the overall catalytic current of the composite electrode (see text).

^cOverall catalytic current of the composite electrode.

^bIndividually contributed current of the overall catalytic current of composite electrode (see text).

^cOverall catalytic current of the composite electrode.

Table	3								
\mathbf{BET}	surface	area	data	of	${\rm RuO_2}$	powders	prepared	at	different
tempe	eratures								

Specific surface area (m ² g ⁻¹)	Pore specific volume (10 ³ cm ³ g ⁻¹)	Sample density (g m ⁻³)
14.49	6.15	1.01
24.68	9.55	1.02
20.67	8.54	0.90
27.30	10.79	0.94
52.40	21.29	0.82
	surface area (m² g ⁻¹) 14.49 24.68 20.67 27.30	surface area (m² g⁻¹) volume (10³ cm³ g⁻¹) 14.49 6.15 24.68 9.55 20.67 8.54 27.30 10.79

 $[\partial \log(i_{\rm pa})/\partial \log(v)]$ values 0.91 and 0.45, suggesting thin layer behaviour in 0.1% Nafion film and semi-infinite behaviour in 1% Nafion film. Clearly, charge transport in 0.1% Nafion film was much faster than in 1% Nafion film [26]. In addition, we believe that in the 0.1% Nafion film, the PSn and Cat_{OER} were separated by very closer distances (since the employed amount of RuO₂ was constant, viz., 0.03% w/v

both in 0.1% and 1% Nafion films), thus accompanied with lower energy barrier for the product formation.

The catalytic current of the Nafion–RuO₂–Ru(bpy)₃²⁺ composite electrode was found to increase with decrease in the preparation temperature of the RuO₂ samples (see column 9 of Tables 1 and 2). Table 3 summarizes the BET surface area data of the RuO₂ powders prepared at different temperatures. The RuO₂ samples prepared at higher temperatures (i.e., 500–700°C) possessed lower specific surface area than the low temperature prepared ones (i.e., 300°C and 400°C). Thus, the catalytic reactivity of the composite electrodes towards H₂O oxidation was apparently governed by the specific surface area of the RuO₂.

The individual contribution by the component $Ru(bpy)_3^{2+}$ alone to the overall catalytic current of the Nafion- RuO_2 - $Ru(bpy)_3^{2+}$ electrode was obtained by subtracting the i_{OER} of the Nafion- RuO_2 electrode from the i_{OER} of

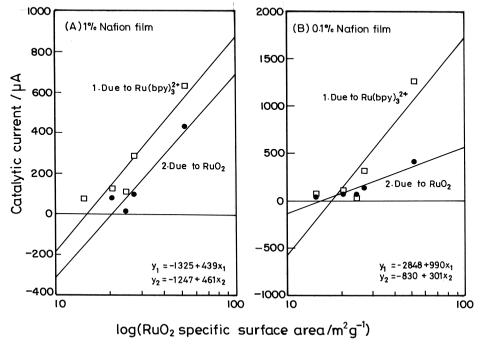


Fig. 4. Plot of catalytic current vs. $log(RuO_2 \text{ specific surface area})$ for H_2O oxidation reaction in pH 4.6 acetate buffer solution: (A) Nafion (1%)-RuO₂ (0.03%)-Ru(bpy)²⁺₃ electrode; (B) Nafion (0.1%)-RuO₂ (0.03%)-Ru(bpy)²⁺₃ electrode.

the multi-component electrode. As RuO₂ is intrinsically catalytic towards O_2 evolution, the i_{OFR} of the Nafion-RuO₂ electrode less the i_{OER} of Nafion-GCE represents more appropriately its individual contribution to the overall catalytic current of the composite electrode. The values calculated for different temperature electrodes are listed in the penultimate columns of Tables 1 and 2. The effect of the specific surface area of RuO2 on the individually contributed catalytic current, by RuO2 alone and $Ru(bpv)_{2}^{2+}$ alone, is shown in Fig. 4A for 1% Nafion electrodes. Fig. 4B describes similar plots for 0.1% Nafion electrodes. Several points could be concluded from these plots: first, acceptable straight lines were observed verifying the surface area effect to the increase in catalytic current; second, the Ru(bpy)₃²⁺ was seen to contribute more than the RuO2 in the overall water oxidation reaction; third, the slopes obtained for the two curves in Fig. 4A were almost equal, revealing that in thick Nafion films the catalyst RuO2 simply acted, with fixed catalytic sites per unit area, to effectively combine the H_2O and $Ru(bpy)_3^{3+}$ for higher catalytic efficiency. Fourth, the curves in Fig. 4B showed different trends, where ~ 3.5 times/ decade of higher catalytic current was noticed for Ru(bpy)₃²⁺ over the RuO₂ effect. This observation, coupled with the fact that the slope in Fig. 4B for RuO₂ is close to that in Fig. 4A, reveals that the H2O oxidation reaction was greatly facilitated in the thin film multi-component electrode, due to certain additional process along with the catalyst surface area effect. A cooperative interaction between RuO2 catalyst and the $Ru(bpy)_3^{2+}$ complex in the film can be envisaged to account for the improved O₂ evolution efficiency, and according to Fig. 4B, the interaction between the CatO₂ and PSn is a linear function of the RuO₂ surface area. This effect along with the facile electron transfer, and the closer proximity of the CatO₂ and PSn allowed the thin film composite electrode to function with a drastically enhanced catalytic activity compared to its thick film counterpart.

The optimized conditions for fabricating the Nafion (0.1%)–RuO₂–Ru(bpy)₃²⁺ multi-component electrode were the following: (a) Nafion: 0.1%, (b) RuO₂ preparation temperature: 300°C, (c) RuO₂ loading amount: 0.03% w/v, (d) pH: 4.6 (acetate buffer/0.1 M). Since the thin film multi-component electrode is transparent and shows good stability, its integration with the cyclic photo-assisted water decomposition system may offer an easy route for solar energy conversion. In this context, the facility to bias the surface-bound multi-component polymer electrode may provide an additional advantage to the solar conversion process.

Acknowledgements

The authors gratefully acknowledge the financial support from the Council of Scientific and Industrial Research, New Delhi, India.

References

- [1] J. Kiwi, M. Gratzel, Angew. Chem., Int. Ed. 18 (1979) 423.
- [2] K. Kalyanasundram, O. Micic, E. Pramauro, M. Gratzel, Helv. Chim. Acta 62 (1979) 2432.
- [3] M. Gratzel, in: M. Gratzel (Ed.), Energy Resource Through Photochemistry and Catalysis, Academic Press, New York, 1983.
- [4] R.-J. Lin, M. Kaneko, in: K. Sienicki (Ed.), Molecular Electronic and Molecular Electronic Devices vol. 1 CRC Press, Tokyo, 1993, p. 207.
- [5] K. Nagoshi, S. Yamashita, M. Yagi, M. Kaneko, J. Mol. Catal. A 144 (1999) 71.
- [6] T. Abe, Y. Tamada, H. Shiroishi, M. Nukaga, M. Kaneko, J. Mol. Catal. A 144 (1999) 389.
- [7] K.C. Pillai, A. Senthil Kumar, V. Dharuman, Bull. Electrochem. 12 (1996) 432.
- [8] A. Senthil Kumar, PhD Dissertation, Department of Physical Chemistry, University of Madras, India, 1998.
- [9] Y.-K. Lai, K.-Y. Wong, J. Electroanal. Chem. 380 (1995)
- [10] T.J. Meyer, J. Electrochem. Soc. 131 (1984) 221C.
- [11] R. Ramaraj, A. Kira, M. Kaneko, J. Chem. Soc., Faraday Trans. 1 82 (1987) 1539.
- [12] R. Ramaraj, A. Kira, M. Kaneko, Angew. Chem., Int. Ed. 25 (1986) 1009.
- [13] A. Mills, Chem. Soc. Rev. 18 (1989) 285.
- [14] A. Senthil Kumar, K.C. Pillai, J. Solid State Electrochem., in press.
- [15] I. Fujita, Kobayashi, J. Chem. Phys. 59 (1973) 2902.

- [16] S. Aridizzone, P. Siviglia, S. Trasatti, J. Electroanal. Chem. 122 (1981) 395.
- [17] R.C. West (Ed.), CRC Handbook of Chemistry and Physics, 70th edn.,1989, p. E-117.
- [18] D.T. Shieh, B.J. Hwang, J. Electroanal. Chem. 391 (1995) 77
- [19] E. Amouyal, P. Keller, A. Moradpour, J. Chem. Soc., Chem. Comm. (1980) 1019.
- [20] J.M. Kleijn, G.K. Boschloo, J. Electroanal. Chem. 300 (1991) 595
- [21] A. Mills, N. McMurray, J. Chem. Soc., Faraday Trans. 1 84 (1988) 379.

- [22] K.J. Takeichi, G.J. Samuels, S.W. Gerstein, J.A. Gilbert, T.J. Meyer, Inorg. Chem. 22 (1983) 1409.
- [23] A. Mills, T. Russell, J. Chem. Soc., Faraday Trans. 87 (1991)
- [24] M. Yagi, K. Nagoshi, M. Kaneko, J. Phys. Chem. B 101 (1997) 5143.
- [25] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980.
- [26] C.R. Martin, I. Rublinstein, A.J. Bard, J. Am. Chem. Soc. 104 (1982) 4817.